STEREOSELECTIVE ARYLATIONS USING METAL PHENOLATES. COMPLEMENTARY SYNTHESIS OF 5-C-ARYLXYLOFUBANOSE DERIVATIVES OF EITHER **<u>L</u>-IDO OR <u>D</u>-GLUCO</u> CONFIGURATION**

Mara Cornia^{a*} and Giovanni Casiraghi^b

a Istituto di Chimica Organica dell'llniversita', Viale delle Sciense, I-43100 Parma, Italy b Istituto di Chimica dell'llniversita', Via Vienna 2, I-07100 Sassari, Italy

(Received in UK I February 1989)

Abstract - The arylation of $3-Q$ -methyl-1,2- Q -isopropylidene- α $-D-xylo-$ pentodialdofuranose (2) at the aldehyde centre by means of bromonagnesium or triisopropoxytitanium salts of phenols 1 provides a simple access *to* 5-C arylxylofuranoses 3 and 4 of either <u>L-ido</u> or <u>D-gluco</u> configurati

As they contain both a nucleophilic aromatic ring and a Friedel-Crafts-type catalitic centre, the phenolatee of co-ordinating metals are unique arylation reactants of potentially electrophilic carbons.¹ When applied to suitable carbohydrates a new route to c- glycosyl derivatives of phenols become feasible, often with high margins of diastereocontrol.² As a further study in this field, we now report an application of this procedure to 3 -Q-methyl-1,2-Q-isopropylidene- α -D-xylo-pentodialdofuranose (2)³ which, according to the metal involved, allows direct preparation of 5- C -(2-hydroxyaryl)-xylofuranose derivatives 3 and 4 in either L -ido or D -gluco form.

Scheme 1

2869

The first employed phenolates were the bromomagnesium salts of phenol (la), 4-tert-butylphenol (1b), 3,4-methylenedioxyphenol (1c), and 2-naphthol (1d). In all cases, using methylene chloride as solvent, L-ido isomers 3a-d were produced in good yields either preferentially or exclusively (odd entries in Table 1).

Table 1. Synthesis of $(5s)$ - and $(5R)-1$, $2-0$ -isopropylidene- 3-0-methy1-5- $(2-hydroxyary1)$ - α $-D$ -xylofuranoses 3 and 4.

Entry	Phenol R^1 R^2 R^3				Counterion		Product % Yield ^a	$\left[\alpha\right]_n$	$x_{D.e.}$	Confign.
ı	la	н	H	н	MgBr	3a	65	-23.9	95	$\underline{\underline{L}}$ -ido
$\overline{2}$	la	H	\mathbf{H}	H	$\text{ri}(0 \text{Pr}^1)$ ₃	4a	58	-34.8	88	$D-gluco$
3	1b		$H t - C_{\Delta}H_Q H$		MgBr	3 _b	78	$+10.8$	95	$\underline{\underline{L}}$ - <u>ido</u>
4	1b		H t- $C_{A}H_{Q}$ H		$\text{Ti(OPr}^{1})$ ₃	4b	55	-57.6	85	D-gluco
5	1c		$O-CH_2-O$ H		MgBr	3 _c	64	-42.4	92	<u>L-ido</u>
6	1c		$O - CH_2 - O$ H		$Ti(OPri)$ 3	4c	50	-18.0	94	D-gluco
7	1d			$H - (CH = CH)_{2} -$	MgBr	3d	74	$+60.9$	92	$L-ido$
8	14			$H - (CH = CH)_{2}$	$\text{Ti}(\text{OPT}^1)$ ₃	4d	94	-53.8	97	D-gluco

^a Yields for pure isolated compounds, based on starting 2. b \subseteq 0.5 CHCl₃ at 20 \pm 1^oC. ^c Diastereomeric excess (d.e.) determined by ¹H NMR analysis of the crude reaction mixtures.

The reversal of stereochemistry was secured by the use of low Lewis acidic triisopropoxytitanium salts of phenols la-d. Indeed, when reactions were carried out in toluene at room temperature, D-gluco derivatives 4a-d predominated quite heavily as seen in even entries of Table 1.

The assignments of configurations to the various carbinols 3 and 4 were mainly based on ¹H NMR spectroscopy. The relevant parameters are presented in Table 2.

From these informations it appears that in the L-ido series, for a given epimeric pair, the vicinal coupling constants between H-4 and H-5 (threo relationship) are constantly larger than those of the corresponding D-gluco isomers (erythro relationship), in agreement with the literature data for related compounds.^{1a,3a,3b} In addition, the chemical shift of the hydrogen at C-3 is extremely diagnostic in distinguishing L-ido derivatives (higher field) from D-gluco ones (lower field).

Compound	$\delta H - 3$	$6H-5$	$J_{4,5}$	J_{5-OH}
3a	3.46	5.17	7.70	
4 a	3.86	5.26	6.87	2.21
3 _b	3.45	5.14	8.06	$\overline{}$
4b	3.86	5.24	6.73	3.78
3 _c	3.49	5.05	8.05	\blacksquare
4c	3.90	5.12	7.53	3.51
3d	3.48	6.05	6.19	-
4d	3.73	6.10	5.91	2.22

Table 2. Relevant $^{\,\,1}$ H NMR parameters for 5-C-Arylfuranoses 3 and 4. $^{\,\,2}$ \cdot

^a Chemical shifts in ppm vs. internal TMS in CDC1₃ at 20 \pm 1^oC; coupling constants in Hz.

In conclusion, we have presented a high yielding regio- and diastereoselective arylation of a dialdose derivative which broaden the scope of our metal phenolate-based synthetic strategy. The sense of this arylation is very dependent on the nature of the metal species involved. Using either bromomagnesium or triisopropoxytitanium phenolates, aldehyde 2 exhibits striking and complementary stereselectivity during carbon-carbon bond formation. The use of a hyghly oxygenophilic metal promoter (MgBr) which would be chelated between the aldehyde function and pyran oxygen of 2 would favore a syn conformer (\underline{A}) with</u> the consequence that the aromatic ring attacks from the less hindered si-face of prochiral c-5.

Scheme 2.

On the other hand, recourse to a poorly oxygenophilic counterion $Ti(OPr^i)_{3}$ would favore the stable *anti*-conformer (\underline{B}) and an arylation trajectory anti to the face containing the sugar fragment. 4

EXPERIMENTAL

The 1_H NMR spectra were recorded with a Bruker CXP-200 (200 MHz) or a Bruker AC-100 (100 MHz) Spectrometer for CDC1₃ solutions (δ scale, TMS=0). The IR spectra were taken with a Perkin Elmer 298 Spectrofotometer as films on NaCl discs. Optical rotations were obtained on a Autopol III polarimeter with a l-dm tube. Reagents and solvents were purified and dried using standard methods. Phenols and $1, 2-0-$ isopropylidene-3- $0-$ methyl- α -Q-Xylo-pentodialdofuranose (1,4) (Fluka) were commercial products.

The reaction work-up involved quenching with a saturated aqueous ammonium chloride solution, extraction with CH₂C1₂ or diethyl ether, drying of the combined extracts over $^{\texttt{Na}_2\texttt{SO}_\texttt{A}}$, and concentration under reduced pressure. Preparative chromatography was performed on Merck Kieselgel (230-400 mesh) (hexane-acetone mixtures). TLC was performed on Merck DC-Fertigplatten Kieselgel 60F-254.

Reactions of Bromomagnesium Phenolates with Aldehyde 2. To a solution of EtMgBr (2 mmol) in diethyl ether (10 mL) the appropriate phenol 1 (2 mmol) was added; the ether was removed under vacuum and CH₂Cl₂ (10 mL) and then a solution of 2 (2.5 mL, 1 mmol) was added at 0° C. The reaction mixture was kept for 20 h at 0° C (at -30° C for 3c); worked up, and purified by chromatography (hexane-acetone 4:l). The following compounds were prepared in this manner. The yields and $\lceil \alpha \rceil$ values are collected in Table I.

(5S)-1,2-0-isopropylidene-3-0_methyl-5-(2-hydroxyphenyl)-a-D-xylofuranose (3a from la <u>and 2).</u> ¹H NMR data: δ 8.17 (bs, 1H, OH), $6.8-7.4$ (m, 4H, H-3', H-4', H-6', and H-7'), 5.98 (d, 1H, J_{1,2} 3.78 Hz, H-1), 5.17 (d, 1H, J_{4,5} 7.70 Hz, H-5), 4.59 (d, 1H, J_{1,2} 3.78 Hz, H-2), 4.41 (dd, 1H, $J_{4.5}$ 7.70, $J_{3.4}$ 3.23 Hz, H-4), 3.46 (d, 1H, $J_{3.4}$ 3.23 Hz, H-3), 3.37 (s, 3H, O-CH₃), 3.35 (s, 1H, OH), 1.46 and 1.30 (2s, each 3H, Me₂C); \vee _{max} 3400, 2960, 1600, 1500, 1470, 1380, 1260, 1180, 1100, 1030, 910, and 660 cm⁻¹. Anal. Calc. for $C_{15}H_{20}O_6$: C, 59.14; H, 7.09. Found: C, 59.06; H, 7.11.

 $(5S)-1,2-0-$ isopropylidene-3-Q-methyl-5-(2-hydroxy-5-tert-butylphenyl)- α - \underline{D} -xylofuranose (3b from 1b and 2). ¹H NMR data: δ 8.00 (s, 1H, OH), 7.22 (dd, 1H, J_{3',4'} 8.34, J_{4',6'} 2.45 Hz, H-4'), 7.09 (d, 1H, $J_{4^1, 6^1}$ 2.45 Hz, H-6'), 6.82 (d, 1H, $J_{3^1, 4^1}$ 8.34 Hz, H-3'), 5.97 (d, lH, $J_{1,2}$ 3.77 Hz, H-1), 5.14 (d, lH, $J_{4,5}$, 8.06 Hz, H-5), 4.60 (d, lH, $J_{1,2}$ 3.77 Hz, H-2), 4.44 (dd, 1H, $J_{3,4}$ 2.95, $J_{4,5}$ 8.06 Hz, H-4), 3.44 (s, 1H, OH), 3.45 (d, 1H, $H_{3,4}$ 2.95 Hz, H-3), 3.38 (s, 3H, OCH₃), 1.47 and 1.31 (2s, each 3H, Me₂C), 1.28 (s, 9H, ^{tBu)}; V_{max} 3340, 2900, 1500, 1370, 1210, 1080, 910, and 730 cm^{-1} . Anal. Calc. for C₁₉H₂₈0₆: C, 64.75; H, 8.01. Found: C, 64.71; H, 7.97.

 $(5S)-1, 2-0-isopropylidene-3-0-methy1-5-(2-hydroxy-4,5-methylendioxyphenyl)-\alpha$ $-D-xy$ lofuranose (3c from lc and 2). ¹H NMR data: δ 7.92 (s, 1H, OH), 6.58 (s, 1H, H-6'), 6.45 (s, 1H, H-3'), 5.98 (d, 1H, $J_{1, 2}$ 3.81 Hz, H-1), 5.90 (s, 2H, 0-CH₂-0), 5.05 (d, 1H, $\rm J_{4, 5}$ 8.05 Hz, H-5), 4.61 (d, 1H, $\rm J_{1, 2}$, 3.81 Hz, H-2), 4.38 (dd, 1H, $\rm J_{4, 5}$ 8.05, $\rm J_{3, 4}$ 3.22 Hz, H-4), 3.49 (d, 1H, $J_{3,4}$ 3.22 Hz, H-3), 3.39 (s, 1H, 0-CH₃), 3.32 (bs, 1H, OH), 1.49 and 1.32 (2s, each 3H, Me₂C); V_{max} 3440, 2960, 1640, 1500, 1380, 1310, 1180, 1100, 1060, and 750 cm⁻¹. Anal. Calc. for C₁₆H₂₀O₂: C, 56.46; H, 5.92. Found: C, 56.51; H, 5.96.

<u>(5S)-1,2-0-isopropylidene-3-0-methyl-5-(2-hydroxynaphtyl)-a-D-xylofuranose (3d from </u> 1d and 2). ¹H NMR data: δ 8.99 (s, 1H, OH), 7.88, 7.80 and 7.74 (3d, each 1H, J = 8.88 Hz, H-4', H-5', and H-8'), 7.42 and 7.28 (2t, each IH, $J = 8.88$, $J = 2Hz$, H-6' and H-7'), 7.14 (d, 1H, $J_{3',4'}$, 8.88 Hz, H-3'), 6.05 (d, 1H, $J_{4,5}$ 6.19 Hz, H-5), 6.01 (d, 1H, $J_{1,2}$ 3.76 Hz, H-1), 4.63 (dd, 1H, $J_{4,5}$ 6.19, $J_{3,4}$ 3.22 Hz, H-4), 4.57 (d, 1H, $J_{1,2}$ 3.76 Hz, H-2), 4.03 (s, 1H, OH), 3.48 (d, 1H, $J_{3.4}$ 3.22 Hz, H-3), 3.21 (s, 3H, O-CH₃), 1.28 and 1.42 (2s, each 3H, Me₂C); ^v …… 3290, 2920, 1600, 1500, 1460, 1370, 1220, 1160, 1070, 1010, 820, and 740 cm⁻¹. Anal. Calc. for C_{la}H₂₂0₆: C, 65.88; H, 6.40. Found: C, 65.95; H, 6.43.

Reactions of Triisopropoxytitanium phenolates with Aldehyde 2. To a solution of $Ti(OPr¹)$ ₄ (2 mmol) in toluene (10 mL) the appropriate phenol (2 mmol) was added; the mixture was distilled to remove azeotropically the propan-2-01 formed and, after cooling at 20°C, toluene (10 mL) and then a solution of (2) (1 mmol) in toluene (2.5 mL) was added. The reaction mixture was kept at 20° C for 20 h, worked up, and purified by chromatography (hexane-acetone, 3:1). The following compounds are prepared in this manner. The yields and $\lceil \alpha \rceil$ values are collected in Table I.

 $(5R)-1,2-Q$ -isopropylidene-3-0-methyl-5- $(2-hydroxyphenyl)-\alpha-p$ -xylofuranose (4a from la and 2). ¹H NMR data: 6 7.83 (s, 1H, OH), 7.2-6.6 (m, 4H, H-3', H-4', H-5', and H-6'), 5.98 (d, lH, J_{1, 2}, 3.81 Hz, H-1), 5.26 (d, 2H, J_{4, 5} 6.87 Hz, H-5), 4.62 (d, lH, J_{1, 2}, 3.82 Hz, H-2), 4.42 (dd, lH, J_{4 5} 6.87, J_{3 4} 3.33 Hz, H-4), 3.86 (d, lH, J_{3 4} 3.33 Hz, H-3), 3.44 (s, lH, O-CH₃), 3.37 (d, lH, J_{S-OH} 2.2l, OH), 1.46 and 1.32 (2s, each 3H, Me₂C); \vee _{max} 3400, 2960, 1600, 1470, 1380, 1230, 1090, 1030, and 770 cm⁻¹. Anal. Calc. for C₂₅H₂₀O₆: C, 59.14; H, 7.09. Found: C, 59.18; H, 7.08.

 $(5R)-1,2-0-$ isopropylidene-3-0-methyl-5-(2-hydroxy-5-tert-butylphenyl)- α - D -xylofuranose $(4b$ from 1d and 2). ¹H NMR data: δ 7.41 (s, 1H, OH), 7.22 (dd, 1H, J_{3',4'}, 8.50, J_{4',6'} 2.43 Hz, H-4'), 7.18 (d, lH, J_{4',6'} 2.43 Hz, H-6'), 6.79 (dd, lH, J_{3',4'} 8.50, J_{3',6'} 1.88 Hz, H-3'), 5.98 (d, 1H, $J_{1, 2}$ 4.03 Hz, H-1), 5.24 (dd, 1H, $J_{4, 5}$ 6.73, J_{5-OH} 3.78 Hz, H-5), 4.62 (d, lH, J_{l, 2} 4.03 Hz, H-2), 4.41 (dd, lH, J_{4, 5} 6.73, J_{3, 4} 3.50 Hz, H-4), 3.86 (d, lH, $\rm J_{3}$ $\rm _A$ 3.50 Hz, H-3), 3.45 (s, 3H, O-CH₃), 3.37 (d, 1H, $\rm J_{5-OH}$ 3.78 Hz, OH), 1.46 and 1.32 (2s, each 3H, Me₃C), 1.28 (s, 9H, 5Bu); \vee _{may} 3360, 2920, 1580, 1380, 1220, 1080, 910, and 730 cm⁻. Anal. Calc. for C_{la}H₂₈0₆: C, 64.75; H, 8.01. Found: C, 64.78; H, 7.96.

(5R)-l,2-O-isopropylidene-3-O-methyl-5-(2-hydroxy-4,5-methylendioxyphenyl)-a $-p$ -xylofuranose (4c from 1c and 2). ¹H NMR data: 6 7.51 (s, 1H, OH), 6.66 (s, 1H, H-6'), 6.44 (s, 1H, H-3'), 5.97 (d, 1H, J_{1,2} 3.78 Hz, H-1), 5.12 (dd, 1H, J_{4,5} 7.53, J_{5-OH} 3.51 Hz, H-5), 4.62 (d, 1H, $J_{1, 2}$ 3.78 Hz, H-2), 4.37 (dd, 1H, $J_{4, 5}$ 7.53, $J_{3, 4}$ 3.50 Hz, H-4),

3.90 (d, lH, $J_{3.4}$ 3.50 Hz, H-3), 3.46 (s, 3H, O-CH₃), 3.22 (d, lH, J_{5-OH} 3.51 Hz, OH), 1.33 and 1.47 (2s, each 3H, Me₂C); v_{max} 3200, 2900, 1480, 1440, 1210, 1160, 1030, and 740 cm^{-1} . Anal. Calc. for $C_{16}H_{20}O_8$: C, 56.44; H, 5.92. Found: C, 56.49; H, 5.88.

(5R)-1,2-0-isopropylidene-3-0-methyl-5-(2-hydroxynapthyl)-~~-xylofuranose **(4d** from 1d and 2). ¹H NMR data: 69.20 (s, 1H, OH), 7.88, 7.72 and 7.65 (3d, each 1H, J = 8.88 Hz, H-4', H-5', and H-8'), 7.40 and 7.27 (2t, each lH, $J = 8.88$, $J = 2$ Hz, H-6' and H-7'), 7.18 (d, 1H, J_{31 A}, 8.80 Hz, H-3'), 6.10 (dd, 1H, J_{A 5} 5.91, J_{5_OH} 2.22 Hz, H-5), 5.92 (d, lH, J_{1 2} 3.76 Hz, H-1), 4.60 (dd, lH, J_{4 5} 5.91, J_{3 4} 2.80 Hz, H-4), 4.57 (d, lH, J_{1 2} 3.76 Hz, H-2), 3.85 (d, lH, J_{5_OH} 2.22 Hz, OH), 3.72 (d, lH, J_{3 A} 2.80 Hz, H-3), 3.39 (s, 3H, 0-CH₃), 1.39 and 1.26 (2s, each 3H, Me₂C); v_{max} 3260, 2920, 1590, 1370, 1215, 1060, 1020, 940, 815, and 750 cm⁻¹. Anal. Calc. for C_{lgH22}0₆: C, 65.88; H, 6.40. Found: C, 65.83; H, 6.33.

Acknowledgement - This work was supported by the Ministero della Pubblica Istruzione.

REFERENCES

- (a) Casiraghi, G.; Cornia, M.; Rassu, G. J. Org. Chem., **1988, 53, 4919-4922;** (b) Casiraghi, G.; Bigi, F.; Casnati, G.; Sartori, G.; Soncini, P.; Gasparri Fava, G.; Ferrari Belicchi, M. J. Org. Chem., 1988, 53, 1779-1785.
- (a) Casiraghi, G.; Cornia, M.; Rassu, G.; Gasparri Fava, G.; Ferrari Belicchi, M. Tetrahedron Lett., 1988, 29, 3323-3326; (b) Casiraghi, G.; Cornia, M.; Gasparri Fava, G.; Ferrari Belicchi, M.; Zetta, L. Carbohydr. Res., in press.
- 3. Reactions of protected dialdoses with carbon nucleophiles have been reported: (a) Mincher, D.J.; Shaw, G.J. J. Chem. Soc. Perkin Trans. I, 1984, 1279-1282; (b) Danishefsky, S.J.; De Ninno, M.P.; Phillips, G.B.; Zelle, R.E.; Lartey, P.A. Tetrahedron, **1986, 42, 2809-2819; (c)** Dondoni, A.; Fantin, G.; Fogagnolo, M.; Medici, A. Tetrahedron, 1987, 43, 3533-3539; (d) Hamana, H.; Ikota, N.; Ganem, B. J. Org. a, **1987, 52, 5492-5494; (e)** Mills, S.K.; Mincher, D.J.; Shaw, G.J. J. Chem. Sot., Chem. Commun., 1988, 399-401; (f) Kim, K.S.; Sohng, J-K.; Ha, S.B. Tetrahedron Lett., 1988, 29, 2847-2850; Coutrot, P.; Grison, C.; Tabyaoui, M.; Czernechi, S.; Valerly, J-M. J. Chem. Soc., Chem. Commun., 1988, 1515-1516.
- 4. For related example of chelation <u>vs</u> non-chelation control in reactions of carbon nucleophiles with chiral carbonyl compounds, see: (a) Hanson, G.J.; Lindberg, T. J. Org. -, **1985, 50, 5399-5401;** (b) Kusakabe, **M.;** Sato, F. Chem. Lett., 1986, 1473-1476; (c) Keck, G.E.; Castellino, S. J. Am. Chem. Soc., 1986, 108, 3847-3849; (d) Bernardi, A.; Cardani, S.; Colombo, L.; Poli, G.; Schimperna, G.; Scolastico, C. J. Org. Chem., 1987, 2, 888-891; (e) Reetz, M.T.; Drewes, M.W.; Schmits, A. Angew. Chem. Int. Ed. Engl., 1987, 26, 1141-1143; (f) Reetz, M.T. Organotitanium Reagents in Organic Synthesis: Springer, Berlin, 1986.